Radio Frequency Numerical Simulation Techniques Based on Multirate Runge-Kutta Schemes
نویسندگان
چکیده
منابع مشابه
Radio Frequency Numerical Simulation Techniques Based on Multirate Runge-Kutta Schemes
Electronic circuit simulation, especially for radio frequency RF and microwave telecommunications, is being challenged by increasingly complex applications presenting signals of very different nature and evolving on widely separated time scales. In this paper, we will briefly review some recently developed ways to address these challenges, by describing some advanced numerical simulation techni...
متن کاملNumerical smoothing of Runge-Kutta schemes
First we give an intuitive explanation of the general idea of Sun (2005) [1]: consistency and numerical smoothing implies convergence and, in addition, enables error estimates. Then, we briefly discuss some of the advantages of numerical smoothing over numerical stability in error analysis. The main aim of this paper is to introduce a smoothing function and use it to investigate the smoothing p...
متن کاملMonotonicity conditions for multirate and partitioned explicit Runge-Kutta schemes
Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for onedimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total va...
متن کاملMultirate generalized additive Runge Kutta methods
This work constructs a new class of multirate schemes based on the recently developed generalized additive Runge-Kutta (GARK) methods [10]. Multirate schemes use different step sizes for different components and for different partitions of the right-hand side based on the local activity levels. We show that the new multirate GARK family includes many well-known multirate schemes as special case...
متن کاملRunge-Kutta residual distribution schemes
We are concerned with the solution of time-dependent nonlinear hyperbolic partial differential equations. We investigate the combination of residual distribution methods with a consistent mass matrix (discretisation in space) and a Runge-Kutta-type time stepping (discretisation in time). The introduced nonlinear blending procedure allows us to retain the explicit character of the time stepping ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2012
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2012/528045